Functional Analysis ( 2009 / 10 ) Roland Schnaubelt

نویسنده

  • Roland Schnaubelt
چکیده

These lecture notes are based on my course from the winter semester 2009/10. I kept the numbering and the contents of the results presented in the lectures (except for some minor corrections). Typically, the proofs and calculations in the notes are a bit shorter than those given in the lecture. Moreover, the drawings and many additional, mostly oral remarks from the lectures are omitted here. On the other hand, I have added proofs for a few peripheral statements not shown in the lectures. I want to thank Dorothee Frey for her support when preparing an earlier German version of this manuscript and Bernhard Konrad for his careful proof reading of the present version.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Equations with Boundary Noise

We study the wellposedness and pathwise regularity of semilinear non-autonomous parabolic evolution equations with boundary and interior noise in an Lp setting. We obtain existence and uniqueness of mild and weak solutions. The boundary noise term is reformulated as a perturbation of a stochastic evolution equation with values in extrapolation spaces.

متن کامل

Center Manifolds and Dynamics near Equilibria of Quasilinear Parabolic Systems with Fully Nonlinear Boundary Conditions

We study quasilinear systems of parabolic partial differential equations with fully nonlinear boundary conditions on bounded or exterior domains. Our main results concern the asymptotic behavior of the solutions in the vicinity of an equilibrium. The local center, center–stable, and center–unstable manifolds are constructed and their dynamical properties are established using nonautonomous cuto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012